Cryo Focused Ion-Beam Scanning Electron Microscopy (cryo FIB-SEM) enables three-dimensional and nanoscale imaging of biological specimens via a slice and view mechanism. The FIB-SEM experiments are, however, limited by a slow (typically, several hours) acquisition process and the high electron doses imposed on the beam sensitive specimen can cause damage. In this work, we present a compressive sensing variant of cryo FIB-SEM capable of reducing the operational electron dose and increasing speed. We propose two Targeted Sampling (TS) strategies that leverage the reconstructed image of the previous sample layer as a prior for designing the next subsampling mask. Our image recovery is based on a blind Bayesian dictionary learning approach, i.e., Beta Process Factor Analysis (BPFA). This method is experimentally viable due to our ultra-fast GPU-based implementation of BPFA. Simulations on artificial compressive FIB-SEM measurements validate the success of proposed methods: the operational electron dose can be reduced by up to 20 times. These methods have large implications for the cryo FIB-SEM community, in which the imaging of beam sensitive biological materials without beam damage is crucial.
translated by 谷歌翻译
Plastic shopping bags that get carried away from the side of roads and tangled on cotton plants can end up at cotton gins if not removed before the harvest. Such bags may not only cause problem in the ginning process but might also get embodied in cotton fibers reducing its quality and marketable value. Therefore, it is required to detect, locate, and remove the bags before cotton is harvested. Manually detecting and locating these bags in cotton fields is labor intensive, time-consuming and a costly process. To solve these challenges, we present application of four variants of YOLOv5 (YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x) for detecting plastic shopping bags using Unmanned Aircraft Systems (UAS)-acquired RGB (Red, Green, and Blue) images. We also show fixed effect model tests of color of plastic bags as well as YOLOv5-variant on average precision (AP), mean average precision (mAP@50) and accuracy. In addition, we also demonstrate the effect of height of plastic bags on the detection accuracy. It was found that color of bags had significant effect (p < 0.001) on accuracy across all the four variants while it did not show any significant effect on the AP with YOLOv5m (p = 0.10) and YOLOv5x (p = 0.35) at 95% confidence level. Similarly, YOLOv5-variant did not show any significant effect on the AP (p = 0.11) and accuracy (p = 0.73) of white bags, but it had significant effects on the AP (p = 0.03) and accuracy (p = 0.02) of brown bags including on the mAP@50 (p = 0.01) and inference speed (p < 0.0001). Additionally, height of plastic bags had significant effect (p < 0.0001) on overall detection accuracy. The findings reported in this paper can be useful in speeding up removal of plastic bags from cotton fields before harvest and thereby reducing the amount of contaminants that end up at cotton gins.
translated by 谷歌翻译
Human operators in human-robot teams are commonly perceived to be critical for mission success. To explore the direct and perceived impact of operator input on task success and team performance, 16 real-world missions (10 hrs) were conducted based on the DARPA Subterranean Challenge. These missions were to deploy a heterogeneous team of robots for a search task to locate and identify artifacts such as climbing rope, drills and mannequins representing human survivors. Two conditions were evaluated: human operators that could control the robot team with state-of-the-art autonomy (Human-Robot Team) compared to autonomous missions without human operator input (Robot-Autonomy). Human-Robot Teams were often in directed autonomy mode (70% of mission time), found more items, traversed more distance, covered more unique ground, and had a higher time between safety-related events. Human-Robot Teams were faster at finding the first artifact, but slower to respond to information from the robot team. In routine conditions, scores were comparable for artifacts, distance, and coverage. Reasons for intervention included creating waypoints to prioritise high-yield areas, and to navigate through error-prone spaces. After observing robot autonomy, operators reported increases in robot competency and trust, but that robot behaviour was not always transparent and understandable, even after high mission performance.
translated by 谷歌翻译
Finetuning language models on a collection of datasets phrased as instructions has been shown to improve model performance and generalization to unseen tasks. In this paper we explore instruction finetuning with a particular focus on (1) scaling the number of tasks, (2) scaling the model size, and (3) finetuning on chain-of-thought data. We find that instruction finetuning with the above aspects dramatically improves performance on a variety of model classes (PaLM, T5, U-PaLM), prompting setups (zero-shot, few-shot, CoT), and evaluation benchmarks (MMLU, BBH, TyDiQA, MGSM, open-ended generation). For instance, Flan-PaLM 540B instruction-finetuned on 1.8K tasks outperforms PALM 540B by a large margin (+9.4% on average). Flan-PaLM 540B achieves state-of-the-art performance on several benchmarks, such as 75.2% on five-shot MMLU. We also publicly release Flan-T5 checkpoints, which achieve strong few-shot performance even compared to much larger models, such as PaLM 62B. Overall, instruction finetuning is a general method for improving the performance and usability of pretrained language models.
translated by 谷歌翻译
我们提供了证据表明,学到的密度功能理论(``dft')的力场已准备好进行基态催化剂发现。我们的关键发现是,尽管预测的力与地面真相有很大差异,但使用从超过50 \%的评估系统中使用RPBE功能的能量与使用RPBE功能相似或较低能量的力量的力量与使用RPBE功能相似或较低的力量放松。这具有令人惊讶的含义,即学习的潜力可能已经准备好在挑战性的催化系统中替换DFT,例如在Open Catalyst 2020数据集中发现的电位。此外,我们表明,在局部谐波能量表面上具有与目标DFT能量相同的局部谐波能量表面训练的力场也能够在50 \%的情况下找到较低或相似的能量结构。与在真实能量和力量训练的标准模型相比,这种``简易电位''的收敛步骤更少,这进一步加速了计算。它的成功说明了一个关键:即使模型具有高力误差,学到的电位也可以定位能量最小值。结构优化的主要要求仅仅是学到的电位具有正确的最小值。由于学到的电位与系统大小的速度快速且尺寸为线性,因此我们的结果开辟了快速找到大型系统基础状态的可能性。
translated by 谷歌翻译
在不失去先前学习的情况下学习新任务和技能(即灾难性遗忘)是人为和生物神经网络的计算挑战,但是人工系统努力与其生物学类似物达成平等。哺乳动物的大脑采用众多神经手术来支持睡眠期间的持续学习。这些是人工适应的成熟。在这里,我们研究了建模哺乳动物睡眠的三个不同组成部分如何影响人工神经网络中的持续学习:(1)在非比型眼运动(NREM)睡眠期间观察到的垂直记忆重播过程; (2)链接到REM睡眠的生成记忆重播过程; (3)已提出的突触降压过程,以调整信噪比和支持神经保养。在评估持续学习CIFAR-100图像分类基准上的性能时,我们发现将所有三个睡眠组件的包含在内。在以后的任务期间,训练和灾难性遗忘在训练过程中提高了最高准确性。尽管某些灾难性遗忘在网络培训过程中持续存在,但更高水平的突触缩减水平会导致更好地保留早期任务,并进一步促进随后培训期间早期任务准确性的恢复。一个关键的要点是,在考虑使用突触缩小范围的水平时,手头有一个权衡 - 更具侵略性的缩减更好地保护早期任务,但较少的缩减可以增强学习新任务的能力。中级水平可以在训练过程中与最高的总体精度达到平衡。总体而言,我们的结果都提供了有关如何适应睡眠组件以增强人工连续学习系统的洞察力,并突出了未来神经科学睡眠研究的领域,以进一步进一步进行此类系统。
translated by 谷歌翻译
对黑暗时代和系外行星(Farside)进行无线电科学调查的遥远阵列是对Lunar Far Side的拟议任务概念,试图在100正方形的区域内部署和操作128双极化的阵列,偶极天线公里。所得的干涉射电望远镜将提供遥远恒星系统的前所未有的无线电图像,从而可以研究冠状质量弹出和能量颗粒事件的微弱无线电特征,还可以导致在其母星的居住区内检测到磁层周围的磁层。同时,Farside还将在一系列红移(z大约50-100)中以全球21厘米信号的全局信号来测量早期宇宙的“黑暗年龄”。阵列中的每个离散天线节点都通过通信和电源系绳连接到中央集线器(位于降落器)。节点是由Cold =可操作的电子设备驱动的,该电子设备连续监测极宽的频率(200 kHz至40 MHz),该频率超过了基于地球的望远镜的能力,该望远镜的功能由两个数量级。实现这种开创性的能力需要在月球表面上制定强大的部署策略,这对于现有高的TRL技术(演示或正在积极发展)是可行的,并且能够在下一代商业地面上传递到地​​表,例如蓝色Origin的蓝月亮着陆器。本文介绍了一种天线包装,放置和表面部署贸易研究,该研究利用了NASA的Jet Propuls实验室开发的束缚移动机器人的最新进展,该机器人用于部署平坦的,天线隔离的,带有光学通信和电源传输的磁带。功能。
translated by 谷歌翻译
Boll Weevil(Anthonomus Grandis L.)是一种严重的害虫,主要以棉花为食。由于亚热带气候条件,在德克萨斯州的下里奥格兰德山谷等地方,棉花植物可以全年生长,因此,收获期间上一个季节的剩下的种子可以在玉米中的旋转中继续生长(Zea Mays L.)和高粱(高粱双色L.)。这些野性或志愿棉花(VC)植物到达Pinhead平方阶段(5-6叶阶段)可以充当Boll Weevil Pest的宿主。得克萨斯州的鲍尔象鼻虫根除计划(TBWEP)雇用人们在道路或田野侧面生长的风险投资和消除旋转作物的田间生长,但在田野中生长的植物仍未被发现。在本文中,我们证明了基于您的计算机视觉(CV)算法的应用,仅在三个不同的生长阶段(V3,V6)(V3,V6)中检测出在玉米场中生长的VC植物,以检测在玉米场中生长的VC植物的应用。使用无人飞机系统(UAS)遥感图像。使用Yolov5(S,M,L和X)的所有四个变体,并根据分类精度,平均平均精度(MAP)和F1得分进行比较。发现Yolov5s可以在玉米的V6阶段检测到最大分类精度为98%,地图为96.3%,而Yolov5s和Yolov5m的地图为96.3%,而Yolov5m的分类精度为85%,Yolov5m和Yolov5m的分类准确性最小,而Yolov5L的分类精度最少。在VT阶段,在尺寸416 x 416像素的图像上为86.5%。开发的CV算法有可能有效地检测和定位在玉米场中间生长的VC植物,并加快TBWEP的管理方面。
translated by 谷歌翻译
为了控制棉花场中的鲍尔象鼻虫(Anthonomus Grandis L.)害虫重新感染,目前的志愿棉花(VC)(VC)(gossypium hirsutum L.)植物检测玉米(Zea Mays L.)和Sorghum等旋转作物中的植物检测(高粱双色L.)涉及在田野边缘的手动田地侦察。这导致许多风险植物在田野中间生长仍未被发现,并继续与玉米和高粱并肩生长。当他们到达Pinhead平方阶段(5-6片叶子)时,它们可以充当鲍尔维尔虫害的宿主。因此,需要检测,定位,然后精确地用化学物质进行斑点。在本文中,我们介绍了Yolov5M在放射线和伽马校正的低分辨率(1.2兆像素)的多光谱图像中的应用,以检测和定位在康沃尔场的流苏中间(VT)生长阶段生长的VC植物。我们的结果表明,可以以平均平均精度(地图)为79%,分类精度为78%,大小为1207 x 923像素的分类精度为78%,平均推理速度在NVIDIA上的平均推理速度接近47帧(FPS) NVIDIA JETSON TX2 GPU上的Tesla P100 GPU-16GB和0.4 fps。我们还证明了基于开发的计算机视觉(CV)算法的定制无人飞机系统(UAS)的应用应用程序应用程序,以及如何将其用于近乎实时检测和缓解玉米领域中VC植物的近乎实时检测和缓解为了有效地管理鲍尔象鼻虫害虫。
translated by 谷歌翻译
自1800年代后期从墨西哥进入美国以来,棉花象鼻虫是Anthonomus Grandis Boheman是美国棉花行业的严重害虫,其损失超过160亿美元。这种害虫几乎被根除了。但是,得克萨斯州南部仍然面临这个问题,由于其亚热带气候可以全年生长,因此每年始终容易恢复有害生物。一旦到达销售虫(玉米),一旦它们到达销售虫的植物,志愿棉花(VC)植物一旦到达销子,可以作为这些害虫的宿主,一旦它们到达销钉头阶段(5-6叶阶段),因此需要检测到,位于,位于,位置,并被摧毁或喷涂。在本文中,我们介绍了一项研究,用于使用Yolov3在无人飞机系统(UAS)收集的三个频段航空图像上检测玉米田中的VC植物。本文的两倍目标是:(i)确定Yolov3是否可以使用UAS和(II)收集的RGB(红色,绿色和蓝色)在玉米场中进行VC检测来研究行为基于平均精度(AP),平均平均精度(MAP)和95%的95%的图像(320 x 320,s1; 416 x 416,s2; 416 x 416,s2;和512 x 512,s3像素)的图像上的yolov3的图像。信心水平。在三个量表之间,MAP没有显着差异,而S1和S3之间的AP存在显着差异(P = 0.04),S2和S3(P = 0.02)。 S2和S3之间的F1分数也存在显着差异(P = 0.02)。在所有三个量表上,MAP缺乏显着差异表明,训练有素的Yolov3模型可用于基于计算机视觉的远程试验的航空应用系统(RPAA),以实时实时实时进行VC检测和喷雾应用。
translated by 谷歌翻译